Orthotown is pleased to offer you continuing education. You can read the following CE article, take the post-test and claim your CE credits. See instructions on page 6.

This CE course is supported by an unrestricted grant from Cybermed, Inc. This course offers two ADA CERP CE Credits.

Interpreting the CBCT Data Volume in Orthodontic Cases Part 1

Orthotown is an ADA CERP Recognized provider. ADA CERP is a service of the American Dental Association to assist dental professionals in identifying quality providers of continuing dental education. ADA CERP does not approve or endorse individual courses or instructors, nor does it imply acceptance of credit hours by boards of dentistry.

For more information, please visit http://www.towniecentral.com/orthotown/onlineCE.aspx
Part 1: Interpreting the CBCT Data Volume in Orthodontic Cases: You Should See What You May Be Missing!

by Dale A. Miles, DDS, MS, FRCD(C)

This is a two-part article designed to help clinicians understand the more common findings they will encounter in the anatomic regions they capture in larger field-of-view (FOV) CBCT machines. Many of these findings will also be seen in smaller FOV machines when the volume capture is moved around to view things like the temporomandibular joint or third molar regions. So this article will be of interest to all clinicians, not just orthodontists. Part I will address the skull, oropharynx, cervical soft tissues and cervical spine. Part II will cover the paranasal sinus regions, nasal cavity, sella turcica region and TMJ. Anyone who owns or uses the data from a CBCT machine will see these pathologic findings and need to recognize them. Some findings are incidental but reportable/recordable. Many cited in this article can significantly impact the patient's health and after finding them, the patient must be referred to a medical specialist for further evaluation and management. Some might even save your patient's life. Missing the most important findings could lead to harm to the patient and result in litigation. All of this information will benefit both you and your patients.

Introduction

It should be intuitively apparent to the orthodontist that there are important structures to examine beyond the dentoskeletal bases in any cone beam data volume that require interpretation. Typical anatomic structures that need to be examined in each volume include the:

1. skull and its contents
2. oropharyngeal tissues
3. cervical soft tissues
4. cervical spine
5. paranasal sinuses
6. nasal cavity
7. sella turcica and parasellar regions
8. temporomandibular joint complexes

This article will instruct the orthodontist on the methodology of examining these important anatomic regions and illustrate some of the more frequent findings in each of these areas. Some of the findings might simply be noteworthy and some will inevitably lead to referral either to another dental specialist or a medical provider. All of the figures seen in this article come from the author's radiology practice; that is, CBCT volumes referred by dentists and dental specialists using CBCT.

The Skull and Its Contents

Most commonly there are physiologic calcifications seen within the skull on large field-of-view CBCT machines. These include the more common calcifications of the pineal gland, choroid plexuses and falx cerebri. Although calcification of the falx cerebri is seen in the nevoid basal cell carcinoma syndrome (Gorlin-Goltz) it is, nevertheless, a common finding, about 10 percent of the general population,¹ unassociated with a syndrome. Figure 1 is an example of such a normal falx finding.

Pineal gland calcification is usually physiologic in nature, occurring in about 40 percent of the general population by age 20.² Pineal calcifications less than 1cm in diameter are considered to be normal. Calcifications greater than 1cm could indicate a lesion in the pineal gland.² Figure 2 shows normal, physiologic calcification of the pineal gland.

Fig. 1: (a.) Calcification of the falx in an axial view. (b.) In a sagittal view. (c.) In a coronal view. All slices are at 0.1mm thickness.
found adjacent to this region and calcification of some or all of their parts can lead to symptoms 4-6. Calcified elongated stylohyoid ligaments are quite common in any age group. It is only when symptoms arise that treatment is indicated. Figures 5 and 6 illustrate unilateral and bilateral cases. Eagle's syndrome has two presentations: the classic or more common is the feeling of a sharp pain like a fishbone in the throat upon swallowing (dysesthesias), the second presentation is one of a dull pain in the throat with radiating pain to the parietal, supra-orbital or infra-orbital regions.

Cervical Soft Tissues
In the cervical region in CBCT examinations the most important pathologic finding to recognize are calcifications in the carotid arteries either unilateral or bilateral. Sclerotic plaques associated with hypertension and increased stroke potential have been seen on panoramic images and reported for many years.8-10 Although some are bilateral most are seen on one side of the image only. Many are probably missed on conventional panoramic because of the positioning of the focal trough in some machines; however, none should be missed on CBCT images. Bilateral, circumferential calcifications of the carotid arteries in the neck region sometimes in conjunction with concomitant parasellar calcifications of the internal carotid will be found within CBCT volumes. A subgroup of the larger numbers of carotid plaques these bilateral circumferential findings might indicate Medial Arterial Calcification (MAC) seen an undiagnosed or uncontrolled type II diabetes mellitus possibly in patients with end stage renal disease (ESRD).11-13 Figures 7 to 9 illustrate cases with calcifications of the carotid arteries, routinely found in CBCT data volumes.
Of course the most common changes found in the cervical spine are those that we also see in the TM joint complex. These include subchondral sclerosis, subchondral cyst formation, loss of joint space and osteophyte formation. Occasionally we also see a “loose body,” especially at the atlantoaxial junction and less commonly calcification of the paraspinal ligaments especially the anterior. What is probably not appreciated by the orthodontist or dentist are that most of these changes are also seen in the facet joints, and not just the vertebral bodies. The examples in figures 11 to 13 (see next page) show most of these changes. In more than 9,000 CBCT cases that I have reviewed to date there also have been several lesions of the vertebral bodies, including possible metastatic lesions.

This course concludes in Orthotown Magazine next month.
Fig. 11: (a.,b.) Loss of joint space osteophyte and subchondral cyst formation are seen in the vertebral bodies C5 and C6. (c.) Remodeling and loss of joint space seen in the right facet joint between C3 and C4 and the same case. (d.-f.) Similar changes in another case in the vertebral body C3 to C7. The osteophyte formation loss of joint space are consistent with osteoarthritis. The subchondral cyst formation seen in the vertebral bodies C4 and C5 are then most likely consistent with osteoarthritic changes. However, multiple site involvement of these radiolucent areas could also be consistent with metastases.

Fig. 12: (a.,b.) Gross remodeling subchondral sclerosis and subchondral cyst formation seen in the left facet joint between C3 and C4. (c.,d.) Loss of joint space, subchondral cyst formation, osteophyte formation and a loose body at the atlanto-axial junction are seen in this case. In addition there is a reverse curvature at the level of vertebral body C3 and C4 consistent with a cervical lordosis. In this case both the vertebral bodies in facet joints show comparable changes. All are consistent with osteoarthritis.

Fig. 13: (a.) An unusual change in the left facet joint between C3 and C4. The enlargement and mixed appearance of the lesion suggest a bony tumor rather than osteoarthritic change. (b.) A thin slice sagittal view through a portion of the lesion almost suggests some multilocularity. (c.) The radiolucency seen in the superior aspect of C4 is suggestive of a simple subchondral cyst. However, the changes seen in figure 13d in the facet joint are not consistent with osteoarthritic change. (e.) A 3D color reconstruction shows a gross remodeling of this left facet joint. The diagnosis of this particular lesion is not known at this time.
1. All of the following pathoses might be seen in the soft tissues of the neck and pharyngeal regions EXCEPT ONE. Which ONE is the EXCEPTION?
 a. tonsillolith(s)
 b. CESLs (calcified elongated stylohyoid ligaments)
 c. carotid plaques
 d. sialoliths

2. All of the following physiologic calcifications might be seen in the cranial vault EXCEPT ONE. Which ONE is the EXCEPTION?
 a. pineal gland
 b. choroid plexus(es)
 c. internal acoustic meatus
 d. falx cerebri

3. Intimal calcifications (plaques in the tunica intima of an artery) of the carotid artery seen in the cervical soft tissues at the level of C3-C4 can be associated with all of the following EXCEPT ONE. Which ONE is the EXCEPTION?
 a. stroke
 b. hypotension
 c. renal disease
 d. Addison's disease

4. In addition to the more common location for carotid artery plaques seen in the cervical soft tissues in a CBCT scan, carotid plaques might also be seen in the following location:
 a. adjacent to the foramen ovale
 b. in the common carotid artery
 c. in the parotid region
 d. near the internal acoustic meatus

5. According to some studies, pineal gland calcifications occurred in what percentage of the general population?
 a. 10%
 b. 20%
 c. 30%
 d. 40%

6. All of the following are clinical features of MAC (medial arterial calcification) EXCEPT ONE. Which ONE is the EXCEPTION?
 a. most commonly bilateral
 b. associated with type II diabetes mellitus
 c. associated with type I diabetes mellitus
 d. associated with the ESRD (end stage renal disease)

7. Although calcification of the falx cerebri is a common or incidental anomaly, it can be found as part of which genetic syndrome?
 a. Gorlin-Holtz syndrome
 b. Neviod basal cell carcinoma syndrome
 c. Chediak-Higashi syndrome
 d. Sjögrens syndrome

8. All of the following are sites of osteoarthritic change EXCEPT ONE. Which ONE is the EXCEPTION?
 a. pedicles
 b. spinal facet joints
 c. atlanto-axial junction
 d. none of the above

9. Calcified, elongated stylohyoid ligaments can be associated with which of the following?
 a. Eagle's syndrome
 b. Behcet's syndrome
 c. Ernest's syndrome
 d. Auriculo-temporal syndrome

10. William Eagle described two distinct syndromes. The second type was associated with all of the following symptoms EXCEPT ONE. Which ONE was the EXCEPTION?
 a. dull throat pain
 b. orbital region
 c. parotid pain
 d. dysesthesia
Continuing Education Answer Sheet

Instructions: To receive credit, complete the answer sheet and mail it, along with a check or credit card payment of $36 to: Orthotown, LLC, 9633 S. 48th Street, Suite 200, Phoenix, AZ 85044. You may also fax this form to 480-598-3450. You will need a minimum score of 70 percent to receive your credits. Please print clearly.

Interpreting the CBCT Data Volume in Orthodontic Cases Part I
by Dale A. Miles, DDS, MS, FRCD(C)

License Number ____________________________

Name ____________________________________

Address __________________________________

City ___________________ State ___________ ZIP __________

Daytime phone ______________________________

E-mail (optional) ____________________________

☐ Check (payable to Orthotown.com)

☐ Credit Card (please complete the information below and sign; we accept Visa, MasterCard and American Express.)

Card Number ______________________________

Expiration Date – Month / Year ____________

Signature __________________ Date ____________

Program Evaluation (required)
Please evaluate this program by circling the corresponding numbers: (3 = Excellent to 1 = Poor)

1. Course objectives were consistent with the course as advertised 3 2 1
2. Course material was up-to-date, well-organized and presented in sufficient depth 3 2 1
3. Instructor demonstrated a comprehensive knowledge of the subject 3 2 1
4. Overall, I would rate this course 3 2 1
5. Overall, I would rate this instructor 3 2 1

For questions, contact Dr. Howard Goldstein, director of continuing education at hogo@farranmedia.com

Legal Disclaimer: The CE provider uses reasonable care in selecting and providing content that is accurate. The CE provider, however, does not independently verify the content or materials. The CE provider does not represent that the instructional materials are error-free or that the content or materials are comprehensive. Any opinions expressed in the materials are those of the author of the materials and not the CE provider. Completing one or more continuing education courses does not provide sufficient information to qualify a participant as an expert in the field related to the course topic or in any specific technique or procedure. The instructional materials are intended to supplement, but are not a substitute for, the knowledge, expertise, skill and judgment of a trained healthcare professional. You might be contacted by the sponsor of this course.

Licensure: Continuing education credits issued for completion of online CE courses may not apply toward license renewal in all licensing jurisdictions. It is the responsibility of each registrant to verify the CE requirements of his/her licensing or regulatory agency.