Unforeseen complications in dentistry can create uncomfortable and possibly irreversible conditions for patients who require difficult treatment planning for clinicians. Up to 80 percent of dental implant patients experience complications due to inflammation, making the longevity of dental implants dependent on maintaining the healthy tissues around them. When implants fail, a number of reasons could be to blame, including peri-implantitis.

Peri-implantitis is the progressive inflammation of peri-implant mucositis, an inflammatory disease involving bacterial contamination of the peri-implant surface. It presents around dental implants with clinically significant progressive crestal bone loss (CBL). Peri-mucositis may present clinically with increased probing depths and bleeding upon probing (BOP), although there is no correlation to marginal bone loss. If the presence of suppuration along with progressing CBL occurs, treatment is required. Patients might experience discomfort while in the acute phase, but suppuration on palpation may be present. The presence of gram-negative pathogens and the persistent presence of bacterial biofilm determine the progressive nature of peri-implantitis.

Several iatrogenic factors can cause peri-implant diseases and subsequent implant failure. Improperly seated or contoured restorations can also lead to peri-implantitis. Other iatrogenic factors include excess biomechanical stresses, overheating of the bone, implant fracture, surgical inexperience and poor undocumented implant systems. Besides the iatrogenic factors, other predisposing risks for peri-implantitis include smoking, genetic factors, periodontal disease history, poor oral hygiene and alcohol use.

Various treatment protocols for peri-implantitis are described in the literature. However, there is no compelling evidence to suggest a superior surgical procedure for more advanced cases, and more evidence is needed to fully evaluate alternative light-activated disinfection (LAD). A frequent non-surgical treatment option for peri-implantitis is the use of antibiotics and antiseptics, but again, more clinical trials are necessary to fully understand the effects of antibiotics on peri-implantitis. Basic and complex interventions also have been reviewed, but no reliable evidence was found to suggest the most effective interventions for treatment.

Laser-Assisted Peri-Implantitis Procedure (LAPIP)

Several recent studies have found laser therapy a promising treatment of periodontal disease and now peri-implantitis. Specifically, pulsed neodymium:yttrium aluminum garnet laser irradiation (Nd:YAG) has been investigated and its efficacy determined for achieving bacterial ablation without damaging the surface properties of titanium implants. Another study found that the use of an Nd:YAG laser was able to totally reduce contamination on irradiated implants. Combined, this research suggests that the use of Nd:YAG lasers could be beneficial in treating patients with peri-implantitis.

Contributing to the positive effects that the Nd:YAG laser has on treating peri-implantitis is its ability to penetrate the soft tissue to achieve an effective kill of bacteria, and its ability to promote effective hemostasis. Whereas some lasers and their wavelengths (e.g., mid-infrared) only achieve surface effects on tissues, the Nd:YAG laser penetrates several mm's into soft tissue and dentin. This is a significantly favorable and distinguishing characteristic of the Nd:YAG laser, since the great depth of penetration of the free running, pulsed laser energy allows for a greater kill rate of black pigmented bacteria and the ability of the laser energy to affect deeper blood vessels, creating excellent hemostasis.

The CO2 and erbium lasers are not as well suited for the laser procedure. Both laser types have wavelengths that are highly absorbed by water and consequently very shallow penetration depths in tissues. Thus, they cannot access pathogens or affect hemostasis below the surface.

With the Nd:YAG laser, the amount of collateral thermal damage is directly proportional to the duration of irradiation. For a short pulse duration of 100 μsec, the zone of thermal damage is slight (e.g., a few 10s of microns[μ]), compared to a ‘long’ pulse of 650 μsec, which creates a narrow zone of coagulation around the irradiation site affecting hemostasis. Significant thermal damage can result with even longer irradiation times, such as from the continuous irradiation mode of the diode laser. Therefore, the combined characteristics of the variable pulsed emission mode of the PerioLase Nd:YAG laser and its near-IR wavelength of 1064nm, affecting deep tissue penetration, make it specifically suited for a laser assisted peri-implantitis procedure (LAPIP).

The Nd:YAG laser (PerioLase MVP-7) is at the heart of the Laser-Assisted Peri-Implantitis Procedure (LAPIP) that is based on the successful LANAP (Laser-Assisted New Attachment Protocol) therapy. The LANAP therapy is an FDA-approved protocol that provides cementum-mediated new periodontal ligament attachment to root surfaces in the absence of long junctional epithelium. It treats the periodontal pocket walls to remove diseased epithelium, then seals them with a laser-generated blood clot. The therapy results in greater probing depth reduction and clinical probing attachment level gains, as well as induces periodontal regeneration.

The LAPIP technique is basically an implant-specific modification to the LANAP procedure. Both utilize an ablation step to remove inflamed sulcular tissue and decontaminate the root/implant surface, followed by a scaling step using an EMS piezo scaler. A laser-induced hemostasis step further decontaminates the tissue and causes the blood to clot, creating a closed system. This seals the area, preventing the downgrowth of the gingival epithelium and allowing the area to heal from the base of the defect coronally.

Case #1

An 84-year-old male patient presented on October 29, 2012, with inflammation and minimal attached tissue on the buccal aspect of implants at the #17 and #18 sites that had been placed...
more than five years earlier. The patient wore an implant-supported maxillary denture. The patient underwent regular hygiene maintenance approximately every three months, and no other treatment had been performed.

At #17, bone loss to the sixth thread was noted mesially and distally; at #18, bone loss to the third thread was noted mesially and distally. The patient had experienced little pain for a couple of months.

The patient’s medical history included seasonal allergies, respiratory and sinus problems, glaucoma, bruxism and HBP. The patient was pre-diabetic (non-medicated) and used a CPAP. He had also undergone corneal transplants in both eyes. Medications included Zyrtec, Simvastatin, Lisinopril, aspirin, depo-testosterone, and vitamin B-12, with no known drug allergies.

Decreasing inflammation was the most important priority and, given the position of the implants, traditional surgical methods would have been difficult, especially with visualization. Therefore, the treatment plan recommended was LAPIP around implants #17 and #18 to reduce inflammation and regenerate bone support.

LAPIP was performed on November 5, 2012, utilizing the PerioLase MVP-7 Nd:YAG laser at 75J increments, with cooling in between to prevent overheating of the implant. Removing the superstructure was deemed too difficult, might have caused unnecessary damage and possibly required remaking the entire fixed prosthesis. Therefore, the LAPIP therapy proceeded with laser ablation intersulcularly on #17 and #18, then scaling with the PS tip of an EMS piezo scaler utilizing a chlorhexidine irrigant to further decontaminate the implant surface. Hemostasis was achieved with the Nd:YAG laser (PerioLase MVP-7), followed by occlusal adjustment of the implants. The energy density for #17 was 15.1J/mm and for #18 was 11.8J/mm.

The patient was placed on amoxicillin (500) four stat, then one tab every eight hours until finished; Motrin (800) one tab every eight hours for three days, then PRN pain; and chlorhexidine rinse: twice a day for 30 seconds. The patient was evaluated post-operatively at one, three, six, 12, 19 and 33 weeks, with occlusion checked each time at each appointment. At 33 weeks, minimal, if any, tissue loss and no inflammation was observed. Radiographs confirmed bone regeneration/recalcification on both implants. Additionally, the patient reported no pain.

Case #2

A 37-year-old female patient presented on June 15, 2012, with an implant at the #3 site that had been placed three years ago. It had become infected two weeks earlier. The patient had seen another periodontist who recommended a surgical treatment approach with grafting.
Upon examination, suppuration was noted on palpation on the buccal aspect. Additionally, the tissue was very inflamed and the crown margin was subgingival. The implant was non-mobile. Vertical bone loss was noted on the distal of #3 but was deeper on the mesial. The MP on #3 was >13 mm. Probing depths on the buccal were, from mesial to distal: 6mm, 10mm, 7mm; and from the palatal: 13mm, 6mm, 5mm.

At the time of presentation, the patient indicated a history of seasonal allergies and breast feeding. Medications included multivitamins and ibuprofen, and there were no known drug allergies.

The LAPIP procedure was recommended due to the amount of inflammation and suppuration surrounding the implant. Treatment, as described in Case 1, was performed on June 18, 2012. The energy density was 14.5J/mm. Additionally, the patient was placed on amoxicillin (500) four stat, then one tab every eight hours until finished; Motrin (800) one tab every eight hours for three days, then PRN pain; and chlorhexidine rinse: twice a day for 30 seconds.

The patient was checked at one week, three weeks, three months, 7.5 months, and 10 months post-operative, with occlusion checked at each appointment. Bone regeneration was noted on both the mesial and distal aspects. Probing depths taken at three months showed a significant decrease in pocket depths, with no suppuration or tissue loss.

The LAPIP procedure was chosen as a first-line treatment in these cases based on the proven success of the LANAP protocol, which has been shown to decrease inflammation, the main priority when treating peri-implantitis. Because the therapy is a tissue-sparing procedure, it is less invasive and can regenerate bone, all with minimal tissue loss and trauma to the patient. The results in these cases demonstrated show a complete decrease in inflammation and regeneration of the bone, which should continue until an intact lamina dura is developed. If, however, the results were not what were anticipated, retreatment can be accomplished with either LAPIP again, the use of traditional surgical peri-implantitis treatments, or in severe bone loss cases, implant removal. As a first-line treatment, LAPIP gives practitioners more options in the long run than other surgical interventions.